[email protected]

Webinars

Machine Learning for Spatial and Temporal Response Prediction: SmartUQ’s Spatial/Temporal Emulator and Varying Geometry Module

On Demand

For many applications in science and engineering a machine learning (ML) model must be able to predict a field of output values. For example, an ML model trained on CFD results may need to predict temperature or velocity as a function of location. An ML model trained on FEA results may need to predict stress as a function of location rather than for example a single scalar output such as maximum stress. Such spatially distributed problems can fall into two general categories:

  • Training samples all share a common grid. No matter how the input parameters are adjusted there are always the same number of outputs at the exact same spatial locations. SmartUQ currently has a Spatial/Temporal Emulator capable of handling such problems. This model further allows the spatially distributed outputs to be predicted as a function of time, for example temperature of a component as a function of location in 3D space and time

  • Different training samples may have a different grid both in terms of number and location of spatial points. Such a situation may occur for example if some of the problem’s input parameters alter the physical geometry and in turn the computational domain. SmartUQ has recently developed a module to handle such problems.

SmartUQ features a number of predictive models called emulators. Join us for this webinar to learn more about SmartUQ’s Spatial/Temporal Emulator and Varying Geometry module.


Presented by Gavin Jones, Principal Application Engineer
Gavin Jones serves as a Principal Application Engineer at SmartUQ, where he is responsible for performing simulation and AI work for clients in the automotive, aerospace, defense, semiconductor, and other industries. He is a member of the SAE Chassis Committee as well as the AIAA Digital Engineering Integration Committee. Gavin is also a key contributor in SmartUQ’s Digital Twin/Digital Thread initiative.